18 research outputs found

    Aggressive Quadrotor Flight through Narrow Gaps with Onboard Sensing and Computing using Active Vision

    Full text link
    We address one of the main challenges towards autonomous quadrotor flight in complex environments, which is flight through narrow gaps. While previous works relied on off-board localization systems or on accurate prior knowledge of the gap position and orientation, we rely solely on onboard sensing and computing and estimate the full state by fusing gap detection from a single onboard camera with an IMU. This problem is challenging for two reasons: (i) the quadrotor pose uncertainty with respect to the gap increases quadratically with the distance from the gap; (ii) the quadrotor has to actively control its orientation towards the gap to enable state estimation (i.e., active vision). We solve this problem by generating a trajectory that considers geometric, dynamic, and perception constraints: during the approach maneuver, the quadrotor always faces the gap to allow state estimation, while respecting the vehicle dynamics; during the traverse through the gap, the distance of the quadrotor to the edges of the gap is maximized. Furthermore, we replan the trajectory during its execution to cope with the varying uncertainty of the state estimate. We successfully evaluate and demonstrate the proposed approach in many real experiments. To the best of our knowledge, this is the first work that addresses and achieves autonomous, aggressive flight through narrow gaps using only onboard sensing and computing and without prior knowledge of the pose of the gap

    Radiative and isospin-violating decays of Ds mesons in the hadrogenesis conjecture

    Full text link
    The masses and decays of the scalar D_{s0}^*(2317) and axial-vector D_{s1}^*(2460) charmed strange mesons are calculated consistently in the hadrogenesis conjecture. These mesons decay either strongly into the isospin-violating pi^0 D_s and pi^0 D_s^* channels or electromagnetically. They are generated by coupled-channel dynamics based on the leading order chiral Lagrangian. The effect of chiral corrections to chiral order Q_\chi^2 is investigated. We show that taking into account large-N_c relations to determine the strength of these correction terms implies a measurable signal for an exotic axial-vector state in the eta D* invariant mass distribution. The one-loop contribution to the electromagnetic decay amplitudes of scalar and axial-vector states is calculated. The Lagrangian describing electromagnetic interactions is obtained by gauging the chiral Lagrangian for hadronic interactions and adding gauge-invariant correction terms to chiral order Q_chi^2. In addition the role of light vector meson degrees of freedom is explored. We confront our results with measured branching ratios. Once the light vector mesons are included, a natural explanation of all radiative decay parameters is achieved.Comment: 102 pages, 7 figures, further improved presentatio

    Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

    Get PDF
    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise. © 2015

    Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories

    No full text
    International audienceIn this paper, we prove that the dynamical model of a quadrotor subject to linear rotor drag effects is differentially flat in its position and heading. We use this property to compute feed-forward control terms directly from a reference trajectory to be tracked. The obtained feed-forward terms are then used in a cascaded, nonlinear feedback control law that enables accurate agile flight with quadrotors. Compared to state-of-the-art control methods, which treat the rotor drag as an unknown disturbance, our method reduces the trajectory tracking error significantly. Finally, we present a method based on a gradient-free optimization to identify the rotor drag coefficients, which are required to compute the feed-forward control terms. The new theoretical results are thoroughly validated trough extensive comparative experiments

    Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Datase

    No full text
    Despite impressive results in visual-inertial state estimation in recent years, high speed trajectories with six degree of freedom motion remain challenging for existing estimation algorithms. Aggressive trajectories feature large accelerations and rapid rotational motions, and when they pass close to objects in the environment, this induces large apparent motions in the vision sensors, all of which increase the difficulty in estimation. Existing benchmark datasets do not address these types of trajectories, instead focusing on slow speed or constrained trajectories, targeting other tasks such as inspection or driving. We introduce the UZH-FPV Drone Racing dataset, consisting of over 27 sequences, with more than 10 km of flight distance, captured on a first-person-view (FPV) racing quadrotor flown by an expert pilot. The dataset features camera images, inertial measurements, event-camera data, and precise ground truth poses. These sequences are faster and more challenging, in terms of apparent scene motion, than any existing dataset. Our goal is to enable advancement of the state of the art in aggressive motion estimation by providing a dataset that is beyond the capabilities of existing state estimation algorithms

    Continuous on-board monocular-vision-based elevation mapping applied to autonomous landing of micro aerial vehicles

    Full text link
    In this paper, we propose a resource-efficient system for real-time 3D terrain reconstruction and landing-spot detection for micro aerial vehicles. The system runs on an on-board smartphone processor and requires only the input of a single downlooking camera and an inertial measurement unit. We generate a two-dimensional elevation map that is probabilistic, of fixed size, and robot-centric, thus, always covering the area immediately underneath the robot. The elevation map is continuously updated at a rate of 1 Hz with depth maps that are triangulated from multiple views using recursive Bayesian estimation. To highlight the usefulness of the proposed mapping framework for autonomous navigation of micro aerial vehicles, we successfully demonstrate fully autonomous landing including landing-spot detection in real-world experiments

    Challenges and implemented technologies used in autonomous drone racing

    No full text
    Autonomous drone racing (ADR) is a challenge for autonomous drones to navigate a cluttered indoor environment without relying on any external sensing in which all the sensing and computing must be done with onboard resources. Although no team could complete the whole racing track so far, most successful teams implemented waypoint tracking methods and robust visual recognition of the gates of distinct colors because the complete environmental information was given to participants before the events. In this paper, we introduce the purpose of ADR as a benchmark testing ground for autonomous drone technologies and analyze challenges and technologies used in the two previous ADRs held in IROS 2016 and IROS 2017. Five teams which participated in these events present their implemented technologies that cover modified ORB-SLAM, robust alignment method for waypoints deployment, sensor fusion for motion estimation, deep learning for gate detection and motion control, and stereo-vision for gate detection
    corecore